5.	LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034				
(Lee	M.Sc. DEGREE EXAMINATION – PHYSICS				
	FOURTH SEMESTER – APRIL 2023				
LUCEA	PPH 4503 – SOLID STATE PHYSICS				
	te: 05-05-2023 Dept. No. Max. : 100 Marks				
Tin	ne: 09:00 AM - 12:00 NOON				
	PART – A Marks) (10 x 2 = 20				
Q. No	Answer ALL questions				
1.	Given that the intercepts made by a crystal plane on the cartesian coordinate axes 2,3,4, find the				
	Miller indices of the plane.				
2.	Find the maximum radius of interstitial sphere that can just fit the void at $\frac{1}{2}$, $\frac{1}{2}$, $\frac{1}{2}$ between the body-				
	centered atoms of BCC structure.				
3.	An insulator has an optical absorption which occurs for all wavelengths shorter than 1800 Å. Find				
	the width of the forbidden energy band for this insulator.				
4.	What is an intrinsic semiconductor?				
5.	Write the relation connecting dielectric constant and electric susceptibility.				
6.	Define the term atomic polarizability.				
7.	Mention the essential parameters for a ferroelectric substance.				
8.	State Hund's rule.				
9.	Write a note on hard superconductors.				
10.	Name the materials used for SQUID fabrication.				
PAR	$\Gamma - B$ (4 x 7.5 = 30 Marks)				
	Answer any FOUR questions				
11.	Obtain Laue's equations for x-ray diffraction by crystals. Show that these are consistent with the				
	Bragg's law.				
12.	a) Given that the effective mass of the electron is double its rest mass, calculate the crystal				
1	momentum for a free electron of energy 0.02 eV, taking the origin at the bottom of the				
	conduction band.				
	(2.5)				

	b)	The number of electrons per unit	t length of a crystal is 0.5 elect	tron per angstrom unit.	
		Determine the Fermi energy	W. Given, $h = 6.62 \times 10^{-34}$	Is, $m = 9 \times 10^{-31} kg$.	
		(5)			
13.	Describe	e the periodic zone scheme, exte	nded zone scheme and redu	ced zone scheme for	
101		ting $E-k$ relationships.			
	represen				
14. With a neat sketch, discuss Hall effect in semiconductors and hence derive the expressions for					
1	coefficient and Hall resistance.				
15.	a)	Estimate the order of diamagnetic	susceptibility of Cu from the fo	ollowing data: radius of	
101		Cu-atom = 1 Å, lattice parameter	1 2	e	
		makes	the	contribution.	
		(4)		contribution.	
	b)	Find the magnetizing force and th	a relative permechility of a mag	matic material having a	
	0)	magnetization 3380 A/m and flux		_	
		magnetization 5580 A/m and mux	defisity 0.0048 w 0/iii .	(3.5)	
16.	16. Discuss the important aspects of BCS theory of superconductors.				
10.	Discuss	the important aspects of BCS theory	of superconductors.		
		PART		(4 x 12.5 = 50 Marks)	
			-0	$(4 \times 12.3 - 30 \text{ Wiat KS})$	
Answer any FOUR questions					
		Answer any I	OUK questions		
		-	-		
17.	Based on	the Ewald's construction, derive the	-		
	 	the Ewald's construction, derive the	Bragg's law in vector form.		
17.	 	-	Bragg's law in vector form.	electron propagation in	
	 	the Ewald's construction, derive the	Bragg's law in vector form.	electron propagation in	
	Discuss	the Ewald's construction, derive the	Bragg's law in vector form.	electron propagation in	
	Discuss crystals.	the Ewald's construction, derive the	Bragg's law in vector form. lering characteristic features of		
18.	Discuss crystals.	the Ewald's construction, derive the the Kronig- Penney model by consid	Bragg's law in vector form. lering characteristic features of	and polarizability. (8)	
18.	Discuss crystals.	the Ewald's construction, derive the the Kronig- Penney model by consid he Clausius- Mossotti equation cor	Bragg's law in vector form. lering characteristic features of	and polarizability. (8)	
18.	Discuss crystals. Derive t Determin	the Ewald's construction, derive the the Kronig- Penney model by consid the Clausius- Mossotti equation cor ne the percentage of ionic polarisabi	Bragg's law in vector form. lering characteristic features of meeting the dielectric constant lity in NaCl crystal having an ir	and polarizability. (8) adex of refraction and a	
18.	Discuss crystals. Derive t Determin static	the Ewald's construction, derive the the Kronig- Penney model by consid the Clausius- Mossotti equation cor ne the percentage of ionic polarisabi	Bragg's law in vector form. lering characteristic features of meeting the dielectric constant lity in NaCl crystal having an ir	and polarizability. (8) adex of refraction and a	
18.	Discuss crystals. Derive t Determin static (4.5)	the Ewald's construction, derive the the Kronig- Penney model by consid the Clausius- Mossotti equation cor ne the percentage of ionic polarisabi	Bragg's law in vector form. lering characteristic features of meeting the dielectric constant lity in NaCl crystal having an in constant	and polarizability. (8) adex of refraction and a 5.6.	
18.	Discuss crystals. Derive t Determin static (4.5) Discuss	the Ewald's construction, derive the the Kronig- Penney model by consid the Clausius- Mossotti equation cor ne the percentage of ionic polarisabi dielectric	Bragg's law in vector form. lering characteristic features of meeting the dielectric constant lity in NaCl crystal having an in constant	and polarizability. (8) adex of refraction and a 5.6.	
18.	Discuss crystals. Derive t Determin static (4.5) Discuss	the Ewald's construction, derive the the Kronig- Penney model by consid the Clausius- Mossotti equation cor ne the percentage of ionic polarisabi dielectric	Bragg's law in vector form. lering characteristic features of meeting the dielectric constant lity in NaCl crystal having an in constant	and polarizability. (8) adex of refraction and a 5.6.	
18.	Discuss crystals. Derive t Determin static (4.5) Discuss wave, gr	the Ewald's construction, derive the the Kronig- Penney model by consid the Clausius- Mossotti equation cor ne the percentage of ionic polarisabi dielectric	Bragg's law in vector form. lering characteristic features of meeting the dielectric constant lity in NaCl crystal having an in constant o atomic lattice and obtain the e	and polarizability. (8) adex of refraction and a 5.6.	
18. 19. 20.	Discuss crystals. Derive t Determin static (4.5) Discuss wave, gr	the Ewald's construction, derive the the Kronig- Penney model by conside the Clausius- Mossotti equation cor ne the percentage of ionic polarisabi dielectric the lattice vibrations of a linear mon roup velocity and force constant.	Bragg's law in vector form. lering characteristic features of meeting the dielectric constant lity in NaCl crystal having an in constant o atomic lattice and obtain the e	and polarizability. (8) adex of refraction and a 5.6.	

22.	With necessary diagrams, explain the AC and DC Josephson effects.

